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A MODEL COMPARISON IN VERTICAL CRUSTAL
MOTION ESTIMATION USING LEVELING DATA

Glinter W. Hein!
National Geodetic Survey
Charting and Geodetic Services
National Ocean Service, NOAA
Rockville, MD 20852

ABSTRACT. A new generalized linear regression model, also
called "mixed" model, is presented for the computation of
zero-epoch heights and height velocities using releveling
observations. The method is compared with the single point
velocity model having a multiquadric interpolator for the
velocity surface.

Tests based on simulated error-free and noisy data show
slight advantages for the mixed model. The multiquadric
technique provides a good interpolation method in the deter-

ministic sense when certain specific precautions are con-
sidered. Error statistics of multiquadrics using a stochastic

approach through least-squares should be interpreted with
extreme care.

The appendix contains geophysical and geological information
useful for defining the trend part in the mixed model. Simple
numerical investigations in the Houston-Galveston area lead to
the conclusion that it might be possible to predict the subsi-
dence of bench marks due to groundwater withdrawal with a
standard deviation of 2 to 3 mm/yr.

1. INTRODUCTION

The new adjustment of the North American Vertical Datum (Holdahl 1984) requires
that (theoretically) all data have to refer to one common epoch in order to avoid
distortions in the results due to possible bench mark motions. To hold costs
within reasonable limits it may be preferable to find a method or algorithm to select

lpermanent address: Institute of Astronomical and Physical Geodesy, University
FAF, Munich, Werner-Heisenberg-Weg 39, D-8014 Neubiberg, Federal Republic of
Germany.

This research was performed during May-August 1984 when the author was a Senior
Visiting Scientist at the National Geodetic Survey, under the auspices of the
Committee on Geodesy, National Research Council, National Academy of Sciences,
Washington, DC.



from the data those reobservations with only white noise, so that it can be
assumed that no systematic errors due to movements have taken place in the con-

sidered area. Thus, all observations can be viewed as static.

There are, however, some areas where rapid changes in elevation due to seismic
or human engineering activities (groundwater table changes, etc.) occur. Those
areas have to be adjusted dynamically either before the adjustment in order to
obtain observations reduced to a common epoch or, when excluding those data
from.the readjustment, to adjust them separately afterwards.

For that purpose a variety of dynamical models has been developed; for a review
see, e.g., Gubler (1984), Holdahl (1978). This paper presents a new generalized
linear regression model for determining zero-epoch heights and height velocities
from releveling data. It includes an interpolation of the velocity surface and
takes advantage of the signal-to-noise ratio in the data. To assess the new method,
it is compared with the linear single point velocity model using multiquadrics for
the velocity surface fitting.

Chapter 2 contains a review of the linear single point velocity method and dis-
cusses the surface interpolaticn. This is followed by the presentation of the new
generalized linear regression model in chapter 3. Test computations and correspond-

ing results are detailed in chapter 4. Finally, the conclusions section outlines
the results of the study.

The appendix reports the results of some numerical investigations on the deter-
ministic trend determination of vertical movements due to water withdrawal. As an
example geodetic and geological data are used from the Houston-Galveston subsidence
area.

2. THE LINEAR SINGLE POINT VELOCITY MODEL

2.1 Observation Equations and Solution

Each observed height difference Ahij between marks Pj and Pi at time t
can be expressed by

ity " Hi’to + R5(t-tg) - Ay(t-t) + ng, (2-1)



vher? Hi,to’Hj,to are the heights of Pi and Pj at the reference epoch to,
Hi’ Hj are the corresponding linear vertical point velocities, and n1.j is the

observational noise. In classical least squares adjustment "ij is considered to
be the negative residual. Observation eq. (2-1) holds under the assumptions that

(i) no motion took place during the time span of the observation itself,
and t is a representative value of this span,

(ii) the motion can be modeled Tinearly,

(iii) the gravity variations in the area considered are so small that the
orthometric height difference Ahij can be associated in a one-to-one
correspondence with geopotential differences Awij,

P

J J
Awij =[ gdn = :g én (2-2)
p'i p1'

where &n are the height increments and g is the gravity along the
observation line, and

(iv) the secular variation of gravity for the time interval (t-to) is
negligible so that its influence on the observation is smaller than
the noise level, (A secular variation of a gravity difference of
8(Ag) 2 50 ugal can cause an error in height of &(ah) = 0.2 mm;
for numerical values see Kistermann and Hein (1979).)

If (ii) is not fulfilled, the observation equation (2-1) can be extended by add-
ing acceleration terms

V[ (t-t )2 - (et )2], (2-3)

If (iii) and/or (iv) are not fulfilled, Ahij has to be replaced by Awij = cij .
(See eq. (2-2).) Consequently, the unknowns in (2-1) are then geopotential numbers
C and corresponding velocities C . A check of these assumptions is essential in
areas with large changes in the Earth's crust, e.g., due to mining, 0il and gas

withdrawal, groundwater table changes, and other factors.

Let p be the number of observations and u the number of parameters.
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The solution of an overdetermined p > u Tinear system of equations such as of
(2-1) is obtained by minimizing

ncC nho= min (2-4)

where C 1is the variance-covariance matrix of observational noise, usually de-

fined in the form of a diagonal matrix for uncorrelated observations, C . = °$jl’
c%i = var(Ahij t). I is the p x p identity matrix, and p is the number of
observations.
Thus, one gets the estimate of the unknown vector of heights ﬁi £ ﬁj ¢ and
the 1inear velocities H by 0 0
a Tac1a1=1,TA1
! (6 gnne) A gnnl ’ (2-5)
where g is the u x 1 vector consisting of the two (u/2)xl subvectors 21, 22,
a _ aTyaT T (5T AT, T _
P R TS L (2-6)
A is the p x u design matrix of known coefficients,
’_\ = “.‘1'1-61] (2-7)

where the p x (u/2) matrix 51 is defined as in the usual static adjustment of
vertical networks. T is a p x p diagonal matrix defined by

T = diag(tt) t = (tty..nt)

1 is the p x 1 observation vector,
1= (8hie)

In order to remove the defect d =2 of (AT g;; A), one has to fix the datum of
the heights and velocities by holding as a minimum one of each fixed. For conven-
ience, this is normally done at one point Po’ e.g.,



H(Po) constant

(2-8)

H(Po) constant .

Additionally, it is required that any bench mark Pi’ Pj considered is observed
at least in two epochs. Otherwise singularities appear and the inverse of
(ATC‘IA) does not exist.

- -nn-

The error statistics of eq. (2-5) are given by the variance-covariance matrix of

the unknowns,

22 nTaclp =l
Cox = Op(A'Chnd) (2-9)

with the a posteriori variance factor of unit weight

- Te-
2 = (n'Crn)/(p-u). (2-10)
Obviously, the results from eq. (2-9) are dependent on' the introduced datum,

eq. (2-8).

2.2 Representation of the Velocity Surface by Multiquadrics

In order to fit a two-dimensional surface to the computed vertical velocities,
any appropriate interpolation method can be used in principle. (See, e.g., Hein
and Lenze 1979) In practical applications two-dimensional polynomials (Vanicek
and Christodoulidis 1974), orthogonal polynomials (Vanicek et al. 1979), and multi-
quadrics (Hardy 1978, Holdahl and Hardy 1979) have been previously chosen. The
latter one is the method currently applied in crustal movement studies at NGS, see
e.g., Holdahl (1982).

The unknown velocity H at a prediction point Pa is determined by

: T

Hy = £ ek for B < u/2 (2-11)
where PB are the so-called nodal points. faB is a known 8 x1 vector defined
later in eq.(2-17). kg = k(Pg) s the g x 1 vector of unknown multiquadric

coefficients. Inserting eq. (2-11) in the basic observation eq. (2-1) results in
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- - -t V(] - T -

The unknowns in eq. (2-12) are now the heights at reference time to and the multi-
quadric coefficients EB defining the velocity surface. Thus g in eq. (2-6) has to
be substituted by

1X)>
|

T a1 T L T ToT

[x, [%,1° = [Htolkel (2-13)
and A in eq. (2-7) by

ITAF,] | (2-14a)

where

F = . : (2-14b)

L “aB

Since B <u/2 the dimension of g can now be smaller than u, The same holds
for the number of columns of A in eq. (2-7).

The datum defect of the normal equation matrix remains the same as before. Re-
call from eq. (2-8) that one height and one velocity have to be fixed. The nodal
points PB can be, in principle, located arbitrarily in the considered area. The
simplest choice is to put them at the same location as the bench marks. How-
ever, the solvability of the normal equations requires certain considerations
(Holdahl and Hardy 1979). Nodal points can be situated anywhere,but are best situ-
ated in places where velocity information can be inferred from the observations.

A theoretical advantage, at least of the model, eq. (2-12), is the fact that the
number B of nodal points can be smaller than the number of discrete velocity un-
knowns considered in eq. (2-1),

dim x,(k,) < dim 52(@). (2-15)
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The velocity at any point can be predicted by eq. (2-11) after having performed the
adjustment. The standard deviation of the predicted velocity can be found using
covariance propagation for the function, eq. (2-11)

- = (el 0.5 -
Oﬂa 00( fGBQBBfGB) . (2 16)

a. can be taken from eq. (2-10). QBB is the covariance matr1x of determined multi-

0
quadric coefficients k the Tower right submatrix of (A C A)'1

B 9

For the definition of

T

flg = [Fgfy..f

GBI GBZ..' Gsn]

the recommended quadric was chosen to be a hyperboloid,

fag, = [0g " %02 + (v - ¥)2 + D11 - (2-17)
where D 1is some kind of smoothing constant which has to be empirically defined.
(xB,yB) are the horizontal coordinates of nodal points P B = (1,2,...) su/2,
and (xa,ya) the corresponding coordinates of the pred1ct1on point POl

It is obvious that the determination of reference epoch heights and velocities as
well as the interpolation of the latter can be done in two steps. Savings in com-
puter time can be achxeved only in the case that dim x (k ) is considerably
smaller than dim x (H) ,

dim %, (k) << %, (A) . (2-18)

Multiquadric analysis was previously used by the author -as the interpolation
method (in a second separate step after the adjustment) for mapping height changes
in the F.R. Germany (DGK-Arbeitskreis 1979) and in the Rhenish Massif (Malzer et al.
1983).




2.3 Representation of the Velocity Surface by Collocation

Instead of using eq. (2-11) for the multiquadric representation of ve]ocities ﬁ,
least squares collocation also can be applied to the adjusted quantities ﬂ as
pseudo-observations in the form

(2-19)

1.
1l
10
1><
+
"
+
132

where BX 1is a trend function describing the large scale motion (such as plate

tilting) of the area under consideration, e.g., using a first order polynomial
approximation for describing an inclined plane,

f a +a,x+ay

plane - % T %

Thus, B and X are defined by

10

= (1 x y),

= (ao al yz)T

(2-20)

1<

The signal s is considered to represent the regional crustal movements and n is
random individual motion at certain points. The solution for X and s is de-
rived by considering the hybrid minimum condition

s'C=ls +h Cz2h = min (2-21)

where C . and C. are the corresponding covariance matrices of s and 0
Thus, we get as the solution (see e.g., Moritz 1980; p. 116)

% = (87C-'B)'BTC M (2-22)
A _ A T 2-1, _ny
= §p) = clCtA-Bn) (2-23)



where

1ol

= QSS + -cﬁﬁ . (2'24)

A possible choice for C.~ is the lower right submatrix of (A'gnnA)'l resultirg
from the foregoing estimation of single point velocities in eq. (2-1). gss can be
found from the adjusted discrete velocities H by determining an empirical co-

variance function (for details see chapter 3).

A slightly different model where a collocation-type representation of the veloc-
ity was used in one computational step was given by Hein and Kistermann (1981).
The observation equation reads

g5t = My, ~ Mg+ (BTod(HyHy) #(t-to)(sy-s5) + nyy . (2-25)

Jsty J

There collocation was used in the form

| =t
1]
10
1><
+
10
iw»n
+
1>

(2-26)

where

13<
1]

—

X

and 51 anq T are matrices defined earlier in eq. (2-7). In this approach the ve-
locities H included in the deterministic part of eq. (2-26) are considered to be
regional changes of recent crustal movements and the signal is interpreted as the
local field of nontectonic influences.

For the detailed solution of eq. (2-26), see section 3.1 of Hein and Kistermann
(1981).



2.4 Multiquadrics Versus Collocation for Velocity Surface Representation

In the fol]owing; some remarks will be made about the two methods discussed above
with respect to the problem of velocity surface fitting.

Expression (2-11) can be formally considered as the basic equation for both
methods when writing it in the form
s T N

_ _ el a1
Ha B faB 58 - fae st HB'

This corresponds to a (cross covariance-) prediction.estimator. (gaé is then an
autocovariance matrix of given centered velocities HB') In the multiquadric
method, however, no inversion is necessary since EB is obtained by solving the
linear symmetric system of equation-

Cog kg = Hg

where EBB is explicitly defined by (2-14b) and (2-17)

Lop: = Fq-

The (arbitrary) choice of the specié] function and the "smoothing" constant D
defining le
tion and the signal-to-noise ratio in collocation. However, neither a convincing
stochastic nor geophysical interpretation can be given in multiquadrics for the
selection of nodal points, the use of any specific quadric,or the value of D,

Although only collocation requires beforehand some type of trend elimination in

for multiquadrics have similarities to those of the covariance func-

H, it is well known that the results of multiquadrics improve cons1derab1v when
applying a similar procedure (Schut 1975). Therefore, as long as both methods

~ are considered as pure interpolation methods for the velocity surface, and we are
dealing with adjusted quantities (at the same locations) without stochastic signal
properties, it may be concluded that the two methods yield meaningful predictions
and, hence, corroborate previous studies (Hein and Lenze 1979; Wolf 1981).

A questipn, however, arises if eq. (2-18) is present in the one-step adjustment
of linear single point velocities in eq. (2-12). This means that the number of
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nodal points is smaller than the number of possible discrete velocity unknowns.

How good is the approximation then? It should be stressed here that the excellent
performance of the multiquadric method in the comparative study of Hein and Lenze

(1979) was obtained on the basis that all data point locations served as nodal

points.

An answer to this question will be given later in this report.

3. A GENERALIZED LINEAR REGRESSION MODEL OR MIXED MODEL FOR DETERMINING

VERTICAL MOVEMENTS FROM LEVELING DATA

3.1 Observation Equations and Solution

Let us start again with the Tinear observation equation (2-1)

ige = Mt i * (Bh) (HyHy) +nyy

jsto J

and assign the different terms in it to a model of the form

1 = AX+Rs+n
where
1 is the pxl vector of observed height differences at time t,
1 = (Ahij,t)
X is the u x1 vector of unknown heights at the reference epoch
x = (Hi,to’ Hjsto’ ...)
R is the pxu, matrix of known coefficients,
R = TA, where T = diag(t-to), t=(t,t,....,t
and s is the unknown u2x1 vector of height velocities,

s = (H).

The matrix A, 1s defined as in an ordinary adjustment of leveling networks.

(3-1)

(3-2)

o!

In

section 2.1 the solution for an overdetermined system of linear observation egs.

(2-1) or (3-1) was obtained by considering the unknown vector Ht

of heights at

Q
reference epoch to and the vertical velocity vector H as fixed effects in a

11



Gauss-Markov model

X
l = [AIB] AT +n (3‘3)
- S
with |
X
E(1) = [AR] |
s
E(n) = 0 | (3-4)
E(m)' = Cpy = var(n)

where the symbol E stands for the expectation operator.

Let us now assume that in contrast to eq. (3-3) not only n but also s = B is
a random vector in eq. (3-2), so that

£(1) = AX+ Ry

E(s) (3-5)

n

e

]
o

il
o

E(n)

Model (3-2) in conjunction with (3-5) is known in statistical literature as a
mixed model (Harville 1976) or generalized linear regression model (Goldberger
1962). If s is an «xl vector of infinite random components and R its corre-
sponding pxe matrix (p 1is the number of observations), then model (3-2) is called
(Teast squares) collocation in physical geodesy (see e.g., Rummel 1976). In order
to avoid any confusion with the pure representation or interpolation of the (ad-
justed) velocities by collocation as discussed in 2.3, we will use the term "mixed
model" for the general adjustment model (3-1), (3-2), and (3-5).

We rewrite the mixed model (342) in the form

Q ts)+n (3-6)

12



where the null vector 0. represents a vector of pseudo-observations of the ran-
dom vector s. Equation (3-6) is a so-called Gauss-Helmert model having the
stochastic properties

1 c 0
cov | T | = [ - . (3-7)
i Qs | ) (.) gss
Substituting in eq. (3-6)
0_+s = s' (3-8)

and adding these equations for the pseudo-observations Qs to the original system
of observation equations, we get the general Gauss-Markov model

cov. L fan 2 (3-9)
05 0 (g

where. s' can now formally be considered a fixed effect with var(s') =0, or in
short form

) —
]

A X +Rs' +

1>

10
1

s!' -

(17

1 = AX-v , Gy (3-10)
with
) A, R
A =
o 0 I
.
)_( =
§I
[ -n
! =
. S




-¢;~ = . ?nn -
=N
- 9 _ Ess
Using the.Teést squarés minimﬁm condition
Ty Tl T s - om - e
v Gy .= g Copn + 5 °Co = min : (3 11).
we derive the estimators for X and s
X = (ATC'IA S T (3-12)
g = ¢ RE-! (1-A%) : | (3-13)
= Zss = = - -1= : _
where _ .
C = Con+RC R (3-14)

0
=
3

Inserting in eq. (3-13) the appkopriéte cross-covariance matrix Ets instead of st
allows the user to also predict signals t at stations different from those
where the observations 1 are given..

The error statistics are given by

_ aTe-14 -1 - (3-15)
Cog = (AIT1A))

10

: ' Ta-1 Tac1y (-1,Tp-1

For the detailed derivation the reader is referred to Moritz (1972) and Wolf (1977).

3.2 Discussion of the Estimation Process

'(1). The application of the hybrid minimum norm (3-11) implies only one datum
defect with respect to the heights at reference epoch ty- The height velocities
Hj’Hi are constrained by the second term in eq. (3-11). Therefore it is sufficient

14



to fix one height H, , .
1,to
(2) The mixed model above is a general algorithm able to predict velocities H
at any point in the area under consideration and height changes in time.

If the vector 1 = (ah
then s = H results in

i t) consists only of observations belonging to ore epach,

[ 17, 3
|

Tp-1 Y
= (t-to) gss Alg (1-AIX)

e T=_1 Ta_1p oy o _
(t-t)) C.. (AC71 - ACAX) = 0 (3-17)

1
[}

which simply expresses the fact that no velocity information is inherent in the
data.

If a bench mark is observed at only one epoch, then the corresponding column of
R isha multiple of the columns of A, so that the corresponding row of BTC'I
(1-513) in eq. (3-13) vanishes, and therefore no contribution of that observation
point is made to the estimate of s.

(3) If the point P(t), where the signal t = ﬁ ‘has to be predicted, is far from
the data points P(s), then

-st -

It
¥
o

(3-18)

fan
ttt > Css

which is a reasonable result for an extrapolation.

(4) Whereas
locities X,
datum for s

in model (2-1),using the minimum condition (2-4), the adjusted ve-

5 refer to an (arbitrary) point with fixed velocity [2-6), the

E in the mixed model (See eq. 3.1) is derived from the data them-
selves. The reference frame is defined by minimizing the (weighted) sum of squares
of velocities. (See eq. 3-11.) Therefore the signals s can be considered in
some way as "inner velocities" similar to the inner or free adjustment theory
(Meiss1 1969).

15



In order to clarify this point, the reader is reminded that leveling observations
are relative measurements without any information about the absolute height and
motion of the network. The following phenomena can occur to the area covered by
the network:

(i) Changes in translation (height) and rotation of the whole area with
fespect to an inertial frame without changing the geometric configu-
ration of the network. An example is the motion of a tectonic plate
on which the leveling network is situated.

(ii) Homogeneous deformation, changes in the volume of the area which are
constant in amount and direction.

(iii) Inhomogeneous deformation as a function of the location of the points.

(iv) Single point movements, irregular in appearance and limited to very
local phenomena, as e.g., subsidence of one bench mark due to (random)
unknown causes in the neighborhood (local soil swelling, nearby en-

gineering projects, etc.).

Whereas the information about (ii) to (iv) can be extracted from the data, an as-
sumption has to be made about (i) or some information coming from another source
has to enter the model, (See (2-8).) However, in most practical applications the
information about an absolute velocity is not available or, at least, is uncertain.
In addition, the covariance matrix (2-9) and consequently, the error statistics
are dependent on the introduced fixed velocity. Why then not choose a reference
frame for the vertical velocities H which is based only on the data and inner
adjustment constraints (shown in the following) similar to the work of Blaha (1971)
and Meissl (1969)? The mixed model proposed in section 3.1 exactly follows this
philosophy and tries to find the value of the velocities based on the "optimal" re-
ference frame defined by the data, since their absolute values are nonestimable
on the basis of the considered observations. (See also Papo and Perelmuter 1983.)

If, in addition, some information about the velocity of one or several points in
the network is available, the results of the mixed models, the signals é = E, can
be transformed to the new reference frame using Meissl (1969), Blaha (1971: p. 76)
or Baarda's S-transformations. (See, e.g., Baarda 1973.)

16



a
L)

Denote by H the velocities in the new reference frame and by H the adjusted
velocities referring to the inner coordinate system. Then, the transformation can
be expressed by

. f
H = H+gdt = [IG] (3-19)
dt
where the vector of differential velocity shift dt is defined by
dt = FH (3-20)
where
Fo= (g9 (3-21)

G is Helmert's transformation vector of dimension u x1, where u, is the number
of velocities,

§T = [11...1] . (3-22)
Thus, eq. (3-19) finally becomes

A= [1+6(e'6) "G 1 H (3-23)
with - 1

G = C.6 - (3-24)

=SS =

When introducing only one point with a fixed velocity ﬁp, eq. (3-23) simplifies
to

1Z2Ke?
]
1>
+
[[p}
~—~
Te>
]
Te

) (3-25)

©
=]

1Le

which means that all the adjusted velocities have_to be changed by one con-
stant. The new variance-covariance matrix Css of H is given by Blaha (1971: 80).
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+ G F Cog + Lo G F - OF C g GF. (3-26)

[ X
|
(3

sS  =s§

Thus, the inner constraint applied on the height velocities B is

[7. 23 2
1ZX e
n
o

(3-27)

In conclusion, the mixed model has the advantage of computing velocities from the
data themselves referring to the average datum defined by eq. (3-11). In a second
step the vector of velocities and its covariance matrix can be transformed to any
arbitrary datum by use of egs. (3-23) and (3-26). If more than one velocity is fixed,
the transformation (3-19) will yield the answer whether or not these assumptions

are confirmed by the data.

(5) ‘The most inconvenient part (and possibly the only drawback) of the mixed

model is the definition of the velocity covariance matrix. _gss can be computed

using an analytical positive covariance function which is only dependent on the
distance between data points, after postulating homogeneity, isotropy,and ergodi-

city for the sample of random quantities S; © Hi' For a deeper understanding of

the subject the reader is referred to the theory of stochastic processes (e.q.,
Papoulis 1965).

An empirical covariance function can be found from preliminary adjustments of H
(or any other source where height velocities are determined) by

cov(r) = L (f) . (-H) (3-28)

r‘.i+'r

where r, 1is the Tocation of the points with known velocity s, = ﬁi’ and m is the

number of these points (or products) in zone e with distance interval <. H

e
is a_mean value of H in the considered area for balancing the velocities,
E(H-ﬁ) =0. Such a trend elimination is necessary for generating quantities re-

presenting a (pseudo-) stochastic process.

In order to handle the step function (3-28) simply, it can be approximated
by a (positive) analytical function, as, e.g., Hirvonen's function

18



»
c(r) = —2 (3-29)
1+ (r/g)?

where Co(r=0) is the variance of balanced height velocities, r = [(xi-xj)2 +
(yi-yj)2]°'5 is the distance between the data points and & the so-called corre-
lation length (“Halbwertsbreite").

Other functions are also suited for the approximation of (3-28). Gauss' function
is another example. If a least squares adjustment is used for determining Co and
£ in (3-29), then the noise in the data should cancel out,

CSS(O) = CO(O) + Cnn(O). (3-30)
(see Mikhail 1976: 399.) Following Moritz (1980: 169) we can characterize each
covariance function by means of three essential parameters:
c the variance of the covariance function, C(r) for r=0,

0

E the correlation length (argument for which the covariance
function has the value C(g) = CO/Z), '

K the curvature parameter « = ng/Co (k 1is the curvature
of the covariance function at r=0)

For Hirvonen's function (3-29) the corresponding quantity is
k = 21n2. (3-31)

Once the three parameters mentioned above are known, eq. (3-29) is uniquely def‘ned,
and the covariance matrix gss can be derived from eq. (3-29) hy

[ co c(r12) c(rla) ]
Co = Co C(r23) e | (3-32)
(sym.) C0
L ............................ }




Assume that the covariance matrix of n in eq. (3-9) is known,
(3-33)

- 2
gnn lkO nn

where lkg is the corresponding variance of unit weight, whereas the covariance

matrix CSS of the pseudo-observations 'QS in eq. (3-9) is only known up to an

unknown factor
2 = -
g050S 1kogss = ks (3-34)

Then the final value e can be found by variance estimation for the group of
pseudo-observations (Schwintzer 1984) using the estimation given by Forstner (1979)

which is based on the relation
E(3'058) = ol (3-35)
where _
. - - . P -
re u, - tr(Qg Q) (3-36)
The symbol "tr" stands for trace.
for e 1in eq. (3-34), we

is the number of signals.
0

Yy
From a first adjustment using an approximate value e
using only § by

get the a posteriori estimator for e

aThol
§$'QscS
2(s = - °SS -
ko(s).1 . (3-37)
s 0
In the next iteration we use an improved value for e,
k2(s)
_ o'’ _
e = >~ € (3-38)
l1 0
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so that finally the whole iteration process can be described by the following two
recursive formulas:

- | g o
ko(s)w_1 = " v = {1,2,...} (3-39)
10 v
and
k2(s)
_ 0 v+l -
€4 ° ———7;;——— e, . (3-40)
10
The iteration will be finished if
Ikg(§) - 1kgl <€ (3-41)

where ¢ 1is a given tolerance. Test computations indicate that three to five
iterations are sufficient for the desired convergence.

(6) These additional remarks refer to the assumption, (3-5), E(s) = E(ﬂ) = (0 in the
mixed model: Let us consider as an illustration the leveling network in figure 1
which was observed twice, once at time t1 and again at t,. The observed height
differences are

Ahij,tl = Ahij,tz ij = {12,13,24,34})

Ah Ah + 2 mm

ol,t 1

2 01,%t
and the assumed %h is considered to be of the same order as the change in Ah°1
between observation epochs t) and t,. The linear single point velocity based
on the minimum condition (2-4) in section 2.1 yields the following estimates for

Hy » 1 = {1,...,4} , with H =0 and (t-t)=1yr,

ﬁi = 2 mm/yr,
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whereas the mixed model where no velocity has to be fixed determines

Fui = 0mm/yr,  i={0,1,...,4}
and interprets the difference in Ah01 between fhe different observation epochs as

measurement error. Isn't that answer based only on the data and the relative
weighting of signal and noise at least as good as the other one mentioned above ?

p B

Ah 1 h 2

P O— g O = 12' —Q

0

Ahy ah,

L — |

" .
g M b

Figure 1.--Leveling netwdrk observed at t1’ t,.
It is obvious that the error estimates in the model above will give some indica-
tions of the uncertainty of the computed parameters. However, in no case is the
situation as clear as here, and the least squares adjustment tends to produce smear-
ing effects. On the other hand, where do we have sufficient information on the ab-

solute velocity value of a point? Therefore, in conclusion, the assumption
E(s) = E(H) = 0 1is a useful working hypothesis which leads us to a data-based refe-

rence frame in recent crustal movement researchl_

(7) If geophysical information about the cause of the uplift or subsidence of an
area is available, it can be used to describe the deterministic part A X of the
mixed model (3-2). Any kind of Tinear regression coefficients (See, e.g., Fahl-
busch et al. 1980; Koch 1983) can be solved for simultaneously in the mixed model.
For example, it is well ‘known from hydrology in the Houston-Galveston area where
subsidence due to groundwater withdrawal is observed, that the thickness of the
aquifer, changes in the groundwater table, and the coefficients of compressibility
of the soil can be used to a.certain extent to describe the surface movements.
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Therefore, observation eq. (3-1) can be extended by replacing Hi,Hj, e.g.,
by (here outlined only for Hj)

. 26 + a2 . 2 . i
H. > H;,t + a 61 + aJSZ + bas3 + bqu + cJ&s (3-42)

0 J
where 855 i={1,...,5} are unknown regression coefficients to be determined in
X together with the vector of zero-epoch heights, and aj could be the thickness
of the aquifer, bj, the groundwater table change, and cj, the coefficient of
compressibility at Pj.

Applying such additional terms in eq. (3-1) has the nice effect that E(s+n) = 0
E(s) = 0 in eq. (3-2).

(8) Sequentia],ana]ysfs of vertical velocities is possible by using the step-
wise collocation algorithm (Moritz 1980: 144). Special attention has to be given
the datum prob]eh when adding new observation points at each step (See also Papo
and Perelmuter 1984). Formulas (3-19) to (3-26) have to be considered to refer
the unknowns to the new datum.

(9) The mixed model takes advantage of the signal-to-noise ratio and avoids
misinterpretations. The more the noise is increased, the more the velocity surface
.1s smoothed.

4. TEST COMPUTATIONS

To assess the two adjustment models discussed in chapters 2 and 3, two FORTRAN
programs were written and several test computations were carried out. The fol-
lowing sections describe the generation of the test data, the different test runs,
and their results.

4.1 Simulation of Test Data

For the test computations a simulated leveling net consisting of a regular grid
with 35 junction points (bench marks) was chosen (fig. 1). The distance between
two bench marks is considered to be 1 km. The network was "observed" three times,
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Figures 1 to 3.--Design of leveling network observed at first (t, =1981.5),
second (t, = }982.5), and third epoch (t, =1984.5). The distance between
two neighboring bench marks is considered to be 1 km.
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t = 1981.5
t, = 1982.5
t, = 1984.5

each time considering a different observation scheme (see figs. 1-3). At the first
epoch the whole network was observed, carrying out P, = 58 observations, the
second time only six loops were releveled with p, = 17 observations, and the third
time p, = 33 leveling lines were surveyed. The three observation designs were
selected in such a way that bench marks no. 14, 32, 34, 36, and 54 were only vis-
ited at t, = 1981.5. Consequently, the generated observation datz contain ro
velocity information at those points and interpolation has to be applied in the
models. This can correspond to practice when bench marks are destroyed, for ex-

ample, and presents a good opportunity to compare the interpolation properties of
the methods described above.

The isolines of assumed uplift and subsidence in the area of test example 1 are
shown in figure 4. The corresponding values at bench mark locations are given in
figure 5. The difference between the two velocity surfaces provides some idea of
the extent to which the assumed original surface was recovered by the discrete bench
mark locations. It is one of the basic problems in geodesy that the continuum al-
ways has to be represented by a discrete number of points without knowing the posi-
tions which are suited to get the best approximation.

Besides a simulation program which can automatically generate the error-free ob-
servation set from the matrix of "true" height velocities, a subroutine could also
be called for the computation of normally distributed random numbers.

A11 heights referring to t, = 1981.5 were taken to be zero, so that the first
observation set consists of zero's if an error-free set is desired, or otherwise
just of the observational noise.

Whereas the velocity surface of test example 1 is more or less smooth having
positive values in the upper left corner and negative values in the lower right
one, test example 2 (fig. 6) represents an irregular surface with numbers of fast
changing sign.

The covariance function and its characteristics were computed using (3-28) and
a least squares adjustment for the approximation of the empirical function by
25
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X

Figure 4.--Simulated isolines of uplift and subsidence (test example 1) in the
area covered by the leveling network. Unit of isolines in mm/yr.
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Figure 5.--Height velocities recovered by the location of the bench marks.
The differences between the two velocity surfaces represent the loss of in-
formation due to the discretization of the problem. Unit of isolines in mm/yr.
The height differences used in the adjustments are obtained by digitization
at bench mark locations and, therefore, reflect the situation in figure 5.
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Table 1.--Characteristics of covariance functions of centered height
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Figure 6.--Height velocity surface of test example 2,
Unit of isolines in mm/yr.

velocities of the two test examples

Test example 1

Test example 2

Mean value H of
height velocities

Variance C° of
centered height_
velocities (H-H)

Correlation length &
(3-30)

Curvature parameter «
(3-31)

- 0.76 mm/yr

74.97 (mm/yr)2

0.9028 km

2.000

- 1.73 mm/yr

36.76 (mm/yr)2

0.4809 km

2.000
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Hirvonen's function, eq. (3-29). The results are summarized in table 1.

For all test computations the reference epoch to = 1981.5 was chosen.

4,2 Results of Test Runs

First, some test runs were carried out assuming "error-free data" and the linear
single point velocity model using the multiquadric surface representation (2-12),
in the following discussion abbreviated by MQUA. The use of "true data" was main-
1y done to understand and evaluate the behavior of the model when varying the loca-
tion and the number of nodal points. Three different arrangements of the nodal
points were chosen. In the first one the location of the points (nod = 34) coin-
cides with all of the bench marks with velocity information (fig. 7). The height
H51 t at reference epoch t and the velocity H51 o were fixed. Recall that
in orger to avoid a s1ngu1ar1ty of the normal equat1on matr1x eq. (2-15) must hold.
Figures 3 and 9 show two other configurations with reduced numbers of nodal points
(nod = 11 and nod = 17, resp.). There was no evidence to put the nodal points at
a certain depth, since to date no convincing geophysical explanation of the nodal
points s available. Another common practice of putting the nodal points on the
surface peaks and valleys in order to get the best possible approximation was not
used herein since in those computations one never knows the exact answer before-
hand (velocity surface). Incidentally, notice that the velocity surface used in
test example 1 is approximately a tilted plane; hence no a priori indication for
the location of nodal points is obvious.

For the so-called smoothing constant D 1in multiquadrics (2-17) Hardy (1978)
suggests (with respect to a plane) the value

D = 0.665 12 (4-1)

where 1 is the rectangular nodal grid spacing, or equivalently, the mean 1 for

irregularity spaced points. Holdahl (1984, private communication) uses in his
NGS studies

D = (¥2H) . 0.4283, (4-2)
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Figures 7 to 9.--Location of nodal points (0) used for multiquadrics. Bench

mark no. 51 (o) serves as fixed station with height velocity H = 0. At
bench marks marked with A no velocity information is inherent in the da*a.
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where V and W are the side lengths of the rectangular area under study and n
is the number of nodal points.

The following error statistics were used in the comparison of the results:

(1) Mean of d1fferences between true height H .t at epoch to and the
0
computed height H to at t

n A
AU IR (4-3)

1
H, ) = =
nHy ) =

(n is the number of samples in egqs. (4-5) to (4-10).

(2) Mean of differences between true height velocity H and computed height
velocity H

. n . : .
m(R) = 2 5 (A- ) (4-4)
nj=1
(3) RMS of true errors in-zero-epoch height determination
e(H, ) = (Q(H = Hy ) m)os | (4-5)
to sp bty TThtg . -
(4) RMS of true errors in height velocity estimation
- n.. <,
e(M) = (z (H-H)%/m) 5, (4-6)
i=1
(5) Mean estimated standard deviation of zero-epoch heights
- 1 "
o(H, ) = = ¢ °H : (4-7)
0 n i=1
t
(6) Mean estimated standard deviation of height velocities
TORCIENE | (4-8)
o(H) = = T o ° -
" =1 H;
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Table 2.--Results using error-free data of test example 1 for MQUA with
varying number of nodal points (nod) and varying smoothing constant
' D (interpolation points 14, 32, 34, 36, 54 not included)

MODEL: MQUA m(Hg, ) m(H) e(Hy,) e(H) 5(Hy,) ()
nod D ;?;. mm mm/yr mm mm/ yr mm mm/ yr
29 0o | 7 0.00 0.00 0.00 0.00 0.00 0.00
29 0.43 | 7 0.00 0.00 0.00 0.00 0.00 0.00
17 0 8 2.08 2.51 2.87 3.79 4.34 2.44
17 | 061 s 12.40 3.03 2.95 4.06 3.93 2.25
11 0 9 0.05 0.42 3.56 3.06 6.17 3.36
11 | 0.86 .9 -0.69 | -0.54 3.71 3.14 6.32 3.49

Table 3.--Results using noisy data of test example 1 (standard deviation
of an observed height difference of 1 km o3 = + 2.0 mm, mean = 0.0)

for MQUA with varying number of nodal points” (nod) and varying
(interpolation points 14, 32, 34, 36, 54 not

smoothing constant D

included)
MODEL:  MQUA m(Hy,) m(H) e(Hy,) e(H) 5(Hy,) &(H)
' see

nod D Fig. mm mm/yr mm mm/yr m mm/yr
29 0 7 2.07 0.96 2.68 1.73 2.14 1.44
29 0.43 7 2.07 0.96 2.68 1.73 2.14 1.44
17 0 8 4,53 4.19 5.03 5.34 4.74 2.59
17 0.61 8 4.71 4.68 5.16 5.66 4.38 2.45
11 0 9 3.06 1.57 4.60 3.82 6.58 3.44
11 0.86 9 2.06 0.27 4.07 3.50 6.63 3.54
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Table 4.--Results at interpolation points using error-free data of test
example 1 for MQUA with varying number of nodal points (nod) and vary-

ing smoothing constant D

MODEL: MQUA m(Hto) m(H) s_(Hto) e(R) E(Hto) )
_nod D ;?3. mm mm/yr mm mm/yr mm mm/yr
29 0 7 0.00 -0.02 0.00 0.13 0.00 0.00
29 0.43 7 0.00 -0.02 0.00 0.59 0.00 0.00
17 0 8 2.20 2.47 2.35 2.72 4.36 2.20
17 0.61 8 2.58 3.40 2.24 3.64 3.95 2.12
11 0 9 0.06 0.10 1.00 0.99 6.28 3.12
11 0.86 9 -0.68 -0.65 1.42 1.02 6.42 3.34

Table 5.--Results of interpolation points using noisy data (standard devia-

tion of an observed height difference of 1 km 055 = + 2.0 mm,

mean = 0.0) of test example 1 for MQUA with varying number of nodal
points and varying smoothing factor D
MODEL: MQUA m(Hto) m(H) e(Hto) e(H) E(Hto) a(H)
nod D ??Z} mm mm/yr mm mm/yr mm mm/yr
29 0 7 1.71 1.20 2.27 1.55 2.11 1.31
29 0.43 7 1.71 0.18 2.27 3.47 2.11 1.43
17 0 8 4.20 4.50 4.41 4.64 4.71 2.32
17 0.61 8 4.45 5.47 4.66 5.51 4.35 2.29
11 0 9 2.70 1.56 3.06 1.85 6.61 3.17
11 0.86 9 1.69 0.49 2.35 0.82 6.65 3.37
| —
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Table 6.--Comparison of results of the single point velocity model using
multiquadrics (MQUA) with nod = 29 nodal points and smoothing con-

stant D = 0 and the mixed model approach (MIX).

Numbers in parentheses refer to the results at interpolation points.

( * ... different noise generator
standard deviation of an observed height

1 difference Ahij of 1 km)
DATA 2 1 m(Hy,) | m(B) | e(Hy) | e(R) | 5(Hy) | S(H)
Model | , _ w 0

(e=error-free | 5
n=nois E

Sy ) Ig mm mm/yr mm mm/ yr mm mm/ yr

UA . .| o000 | o0.00| o000| o0.00| o0.00| o0.00

- (0.00) | (-0.02)| (0.00)| (0.13)] (0.00)] 0.00

MIX . (| o002 | o0 0.03 0.01 0.11 3.34

(0.02) | (-0.59)| (0.02)| (1.63)| (0.10)] (7.10)

L 209 | 09 | 2.68| 1.73| 2.14 1.44

MQUA 1 n 5 og5=2 mm | 11 790y | (20| (2i27)| (1iss)|  (2.11)] (1.31)

o 2.00 | 0.8 | 2.58 1.65 | 2.29 | 3.41

MIX In 50552 mm |34 (1063) | (0.74)| (2.28)| (2.57)| (2.26)| (7.17)

o 11,11 | -2.11 | 13.57 5.43 9.49 | 6.61

MUA In 5 ogy=8 mm 11 11077) | (-1003) | (13:51) | (4.54)| (9.36)| (5.85)

o 211,37 | -2.31 | 13.42 | 4.2 | 8.70 | 4.8

MIX [n 5 o;5=8 mm | 11 3572y | (-2.20)| (13.82)| (4.40)| (8.65)| (7.50)

. 0.78 | 2.97 1.97 3.29 | 2.07 1.40

MQUA | n%5 og5=2 mm | 14 o763y | (2.47)| (1.83)] (2.63)| 1(2.08)| (1.28)

o 0.70 | 2.81 1.86 | 3.15 | 2.29 | 3.47

MIX |n¥5 055=2 mm | 1} 0'60) | (2.08)] (2.92)| (1.47)| (2.26)| (7.17)

. 2.08 | 0.19 | 2.54 1.02 1.78 1.21

MQUA In 5 og5=l.5mm | 21 5091y | (4.28)| (2.53)| (6.82)| (1.75)| (1.10)

. 2.13 | -0.43 | 2.64 1.05 | 1.71 1.85

MIX |n s og5=lomm 1 20 596y | (4.43)| (2.60)| (7.31)] (1.69)| (5.84)
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Tables 2 to 5 summarize the results of computations with the single velocity
‘model in connection with a multiquadric representation of the velocity surface,
eq. (2-11), abbreviated by MQUA, as mentioned above. Error-free and noisy data
were simulated assuming varying numbers -of nodal points as well as different smooth-
ing constants D.

Table 6 compares the results of MQUA and the mixed model (MIX) described in
. chapter 3.

4.3 Diécussion of the Resu]ts_

.From tables 2 to 5 one can conclude that MQUA gives good results only if the
model considers one nodal point at every bench mark with known velocity information.
Any reduction in the number of nodal points leads to a considerable loss in accura-
cy in determining the zero-epoch heights and the height velocities. However, the
loss in accuracy is not a function of the number of nodal points (see tables 2 to 5).
Therefore, there might be an optimal configuration of these points smaller in the
number than the discrete velocity unknowns in the model which could represent the
velocity surface with the desired accuracy. However, this is not known in advance
by the user. In addition, irregular location of the nodal points requires some
solvability analysis of the model beforehand (Holdahl and Hardy 1979). The test
computations with test example 1 (fig. 5) where the velocity surface is approximately
a tilted plane have clearly shown that in such cases any attempt to establish the
location of nodal points correlated with surface peaks and valleys fails. Due to
the absence of any theoretical or heuristic directive to find the optimal location
of the nodal points, each velocity unknown in the model should be replaced by a
nodal point. In that case, no substantial saving of computer time is achieved in
solving for both the nodal points and the discrete unknowns. Hence, the approxi-
mation and the interpolation of the velocity surface can be separated from the ad-
justment itself and done in a second step.

The use of previously recommended smoothing constants (see egqs. (4-1) and (4-2))
introduced no improvement in the final results. Since just the opposite happened,

it seems to be preferable to avoid the smoothing constant completely, setting
D =0.

"Tables 4 and 5 corroborate the good interpolation properties of multiquadrics and
confirm early results presented by Hein and Lenze (1979) where nodal points were
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situated at each station. However, although MQUA may be an excellent determin®stic
interpolation method, the meaning of the computed error estimates is not always
reliable as will be discussed later. They should be interpreted with extreme cau-

tion. The pure interpolation of the velocity surface carried out by multiquadrics
is better than those of MIX at stations where the surface presents a nearly linear
behavior.

From the results obtained by using noisy data we can deduce that the estimated
zero-epoch heights and velocities are disturbed by the same order of magnitude
as the standard deviation of the noise.

The results of the mixed model (MIX) are only slightly better (closer to the
true values) than those of MQUA. (See table 6.) The great advantage of MIX, how-
ever, is that its error estimates are more reliable. In figure 10 a typical
example of discrepancies between true and computed values is shown (results of
last two lines in table 6). The stations are marked where the computed standard

deviations are three times larger than the estimated velocities. Whereas the 3o~
error statistics of MQUA indicate that all estimated velocities are relijable,

those of MIX consider eight values as bad. A comparison with the (printed) true
errors at the corresponding locations shows that six out of eight reflect the true
picture. Based on that type of analysis of several test computaticns one can state
that the error estimates from MQUA are not reliable. This seems to be a

serious drawback,since in practical applications the results have to be assessed
through the computed error estimates.

Further research regarding the recovery of the autocovariance function of the
height velocities should be done; whereas the variance can be estimated in the
mixed model, the correlation length must be found by other means. However, any
source providing information about the changes in height in the corsidered area
can be used. There is hope that geophysical information abcut <he type of motion
can define the correlation length properly.

5. CONCLUSIONS

The Tinear single point velocity model used in connection with multiquadrics for
the velocity surface representation provides good results only if:

35



. TRUE VELOCITY ERRORS - MODEL MQUA

-0.71 -1.04 -1.60 12.38 -1.21 0.31 -0.78
-0.76 -0.60 ~1.15 -0.88 ~-1.00 -0.40 -1.07
7.26 2.65 4.37 0.37 -2.74 -2.02
-0.51 -0.52 -0.09 0.35 0.14 -0.62 0.02

0.00 -1.07 -0.49 0.15 -0.29 -0.78 0.27

TRUE VELOCITY ERRORS - MODEL MIX

-0.64 -1.00 l -1.55 |13.79 I -1.33 0.10 -1.03

-0.74  -0.58  -1.11  -0.89  -1.11  -0.60  ~-1.35
2.05 ] Ls.sz ] 2.29 4.01 0.02 -2.68
-0.54  -0.54  -0.02 0.25  -0.55 0.11

0.00 -1.09 -0.37 3.27 O.14 | -0.69 | 0.40

Figure 10.--Typical example (see table 6, last two lines) of discrep-
ancies between true velocities and computed ones (upper matrix:
MQUA, lower matrix: MIX). Marked boxes refer to stations where the
standard deviation is three times larger than the computed velocities.

The matrices are printed in the same arrangement as the 1evelipg
net (see fig. 1).



(i) if nodal points are considered at every bench mark with velocity
information, and

(ii) the smoothing constant D is set to zero.

There is no need, in principle, to perform the adjustment and the velocity sur-
face interpolation in one step, since no saving in computer time can be achieved
(the number of nodal points is equal to the number of discrete velocity unknowns).
Multiquadrics is mainly a deterministic interpolation method without any stochas-
tic model. A serious drawback of the linear single point velocity model (MQUA) is
the fact that the error statistics seem to be unreliable, and nc assessment of the
quality of the determined heights at epoch zero and the velocity unknowns can be
made using the adjustment results. The model further requires the fixing of one
velocity and one height as datum. Consequently, the derived parameters are depend-
ent on this absolute constraint, a fact that should always be kept in mind.

The generalized 1inear regression or mixed model takes the datum of the veloci-
ties from the data via the hybrid minimum norm. This is more pleasing to the %ype
of data considered. Since leveling observations are relative by their very nature,
only relative heights and velocities can be estimated. The results of the model MIX
are only slightly better than those of MQUA. However, the error statistics are
much more useful for assessing the estimated unknowns properly. Since a stochastic
model is involved, misinterpretations can be avoided and the signal-to-noise ratio

is properly considered.

Thus, multiquadrics has its place where a pure deterministic approach is desired.
When measurements with unavoidable noise are present one should not mix such a da-
terministic method with stochastic considerations within a least squares adjust-
ment model.

In particular, if the signal-to-noise ratio approaches the value one, misinterpre-
tations of the results of model (2-1) with multiquadric representation of the
velocity surface are possible. (See the simple example in chapter 3.2, paragraph

(6).)
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APPENDIX.--SOME SIMPLE NUMERICAL INVESTIGATIONS ON THE DETERMINISTIC TREND
DETERMINATION OF VERTICAL MOVEMENTS DUE TO WATER WTHDRAWAL.
EXAMPLE: HOUSTON-GALVESTON AREA.

In section 3.2, paragraph (7), it was suggested that geological and geophysical
information on the cause of height changes can be used to describe the determinis-
tic part A\X of the mixed model (3-2). Some simple computations should demonstrate
this in the Houston-Galveston area (fig. A 1) where mainly withdrawal of water has
caused a pattern of subsidence. A specially designed geodetic leveling network
monitors the large subsidence measured since 1906,

The most recent surveys were carried out in 1978 (Balazs 1980) and 1983 (Zilkos-
ki 1984). The groundwater withdrawal is monitored by the U.S. Geological Survey in
cooperation with the Texas Department of Water Resources and the Harris-Galveston
Coastal Subsidence District (see, e.g., Gabrysch 1982; Strause and Ranzau 1983). It
has resulted in water-level declines of as much as 76 m in the Chicot aquifer and

as much as 91 m in wells completed in the Evangeline aquifer. The center of region-
al subsidence is the Pasadena area, where more than 3.0 m of subsidence have ocur-
red since 1906.

Due to limited data available in digital form a simple regression was chosen to
describe the height changes,

Hi,tz' Hi,t1 = 8y *ta, 48 v 3, 186, + by 385+, 58, (A-1)
where
Hi £ - Hi t is the difference in height of bench mark
2 ! Pi in the time interval t, - t;, ,
60,...,6l+ are unknown regression coefficients,
a4 0, are the water level cHanges in wells of
the Evangeline and Chicot aquifer respectively,
in the considered time interval at bench mark Pi s
b1 50 b2 j are the thicknesses of clay of the Evangeline and

of the Chicot aquifer respectively, at
bench mark Pi
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Figure A 1. Leveling stations (denoted by tiny circles)
in the Houston-Galveston 6 Texas, Area.
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Table A 1.~--Results of the regression analysis in the Houston-Galveston area

STEP-WISE MULTIPLE REGRESSION..... HOUSTON
NUMBER OF OBSERVATIONS 383
NUMBER OF VARIABLES 5
NUMBER OF SELECTIONS 3

CONSTANT TO LIMIT VARIABLES 0.00000

VARIABLE MEAN STANDARD
NG. DEVIATION
4 ~98.72298 86.5149C HEIGHT DIFFERENCE IN MM 1978-1983
2 31.43968 46.87114 WATER LEVEL CHANGE IN EVANG. AQUIFER
3 26.42768 37.53087 WATER LEVEL CHANGE IN CHICOT AQUIFER
4 1603.43473 433.80165 CLAY THICKNESS OF EVANGELINE AQUIFER
5 366.30444 66.98117 CLAY THICKNESS OF CHICOT AQUIFER

(VARIABLES 2-5 IN FEET)

CORRELATION MATRIX

ROW 1
1.00000 0.87798 C.78705 0.57644 0.14083
ROW 2
0.87798 1.00000 0©.84304 0.67573 0.15221
ROW 3
0.79705 0.8430= 1.00000 0.33213 -0.27418
ROW 4
0.57644 0.67573 0.33213 1.00000 0.56863
ROW 5§
©. 14083 0.15221 -0.27418 0.56863 1.00000
STEP 4
VARIABLE ENTERED..... 4
SUM OF SQUARES REDUCED IN THIS STEP.... 32.101
PROPORTION REDUCED IN THIS STEP........ ©.000C
CUMULATIVE SUM OF SQUARES REDUCED...... 2287137.379
CUMULATIVE PROPORTION REDUCED.......... Cc.80C OF 2852204.318
FOR 4 VARIABLES ENTERED
MULTIPLE CORRELATION COEFFICIENT... 0.884
(ADJUSTED FOR C.F.)........... 0.893
F-VALUE FOR ANALYSIS CF VARIANCE... 377.813
STANDARC ERROR OF ESTIMATZ......... 38.903
(ADJUSTED FOR D.F. ). .......... 39.056
VARIAELE REGRESSION STD. ERROR OF COMPUTED
NUMBER COEFFICIENT REG. COEFF. T-VALUE
2 C.79745 0.13800 5.779
3 1.12276 0. 15507 7.240
5 0.2649¢ 0.04825 5.382
4 0.00121 0.00832 C. 146
INTERCEPT -252.47518
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As mentioned above, the results of the last two relevelings (1978 and 1983)
were used, thus t2 - t1 =5 yr . The water level changes in the Evangeline and
Chicot aquifers were digitized in a grid of approximately 4x4 km2 from figure 3 and
figure 1, respectively, in the report of Strause and Ranzau (1983). Thereby a dif-
ference of some months in the time interval with respect to that used for the re-
Teveling results had to be accepted. The thickness of clay in the Evangeline and
Chicot aquifers were digitized from figures 36 and 37 of Gabrysch (1982) using a
grid of approximately 6x6 km2. The final values 3 ; 2,1 and bl,i’ bz,i at
bench mark locations were computed by a simple weighted average procedure using the
corresponding values at the grid points and weighting it with reciprocal distance.
To assess the significance of introduced parameters in the model (A-1),a stepwise
multiple regression procedure was chosen.

s @

The results of the regression study can be summarized as follows. Variable no. 4,
the thickness of clay bl,i in the Evangeline aquifer does not contribute to the
regression at all. The determined coefficient 8, is insignificant. There is
also only a small improvement in terms of the correlation coefficient from 0.884 to
0.894 when taking into.account variable no. 5, the thickness of clay bz,i in the
Chicot aquifer. Thus, accepting a loss of accuracy of 2 mm in the standard error
of estimate, only the water level changes in the two aquifers have to be considered.

The results using all variables in the regression are outlined in table A 1.

Conclusions

Using a simple regression analysis it is possible to determine the subsidence by
groundwater level changes in the Houston-Galveston area in the time interval 1978
to 1983 with a standard deviation of 3-4 cm, which corresponds to about 6-8 mm/yr.
This is an interesting result in spite of more sophisticated models, 1ike three-
dimensional finite elements analysis, which are currently under research by geo-
logists and geophysists in that area.

Considering the facts that:

(1) the data had to be digitized from small scale maps,

(i) the water well Tocations were not available at the time of this study,
and
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(iii) the corresponding time intervals of considered height changes and geo-
logical parameteré do not coincide exactly,

it can be concluded that using better data, the water well locations, and the re-
gression trend model equipped with a stochastic signal part as suggested by the
mixed model (3-2), it might be possible to predict the subsidence in such areas
with an accuracy of + 2 mm/yr.

The application of such a procedure allows for separate treatment of subsidence
areas in the project to readjust the North American Vertical Datum (NAVD). Thus,
the heights in those areas can be reduced to a common epoch for final inclusion in
the NAVD using the above approach.
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